Auto Classification Module¶
Auto Classification Module description
Functions
-
void *
rf_auto_classification_init(const char *models_base_path, const char *model_params, rf_error_type *error)¶ Initializes classifier.
- Return
classifier handle
- Parameters
models_base_path: path to the models base directory or to models compound package filemodel_params: settings, can be NULL to use defaultserror: output parameter to return an error details
-
float
rf_get_device_temperature(void *classifier_handle, rf_error_type *error)¶ Get myriad device temperature.
- Parameters
classifier_handle: classifier handleerror: output parameter to return an error details
-
void
rf_auto_classification_close(void *classifier_handle, rf_error_type *error)¶ Deletes classifier.
- Parameters
classifier_handle: classifier handleerror: output parameter to return an error details
-
void
rf_auto_classification_infer(void *classifier_handle, void *image_handle, char **out_class_id, int max_stirng_len_out_class_id, float *out_confidence, int *top_k, rf_error_type *error)¶ Infer class from image
- Parameters
classifier_handle: classifier handleimage_handle: image handle (use image API to create)out_class_id: output parameter that returns a list of class ids (list should be preallocated to at least *top_k size, and each string in the list should be preallocated to at least of max_stirng_len_out_class_id size)max_stirng_len_out_class_id: maximun preallocated length of strings in out_class_id)out_confidence: output parameter that returns a corresponding list of confidences (should be preallocated to at least *top_k size)top_k: input/output parameter which indicates the k top classes and confidences to return, on the output holds the value of the actual len of out_class_id and out_confidenceerror: output parameter to return an error details
-
int
rf_auto_classification_get_enrolled_labels_count(void *classifier_handle, rf_error_type *error)¶ Get the amount of enrolled labels
- Return
enrolled labels count
- Parameters
classifier_handle: classifier handleerror: output parameter to return an error details
-
void
rf_auto_classification_get_enrolled_labels(void *classifier_handle, char **out_labels, int max_string_len, int *labels_count, rf_error_type *error)¶ Get enrolled labels
- Parameters
classifier_handle: classifier handleimage_handle: image handle (use image API to create)out_labels: output parameter that returns a list of labels (list should be preallocated to at least *labels_count size, and each string in the list should be preallocated to at least of max_stirng_len size)max_stirng_len: maximal size of each preallocated string in out_labels, string less than that size will be truncated to this sizelabels_count: input/output parameter which indicates the amount of labels to return, out_labels should be allocated to be able to hold themerror: output parameter to return an error details
-
void
rf_auto_classification_how_confident(void *classifier_handle, void *image_handle, char *class_id, float *out_confidence, rf_error_type *error)¶ Return how much the model is confident that the specified class is shown in the image
- Parameters
classifier_handle: classifier handleimage_handle: image handle (use image API to create)class_id: class id of the class that presumably shown in the imageout_confidence: output parameter that returns the confidence levelerror: output parameter to return an error details
-
void
rf_auto_classification_enroll(void *classifier_handle, void *image_handle, const char *label, rf_error_type *error)¶ Enroll image of a specific class
- Parameters
classifier_handle: classifier handleimage_handle: image handle (use image API to create)label: class label of the class shown in the imageerror: output parameter to return an error details
-
void
rf_auto_classification_train(void *classifier_handle, rf_error_type *error)¶ Train the classification module on enrolled data
- Parameters
classifier_handle: classifier handleerror: output parameter to return an error details
-
void
rf_auto_classification_save(void *classifier_handle, rf_error_type *error)¶ Save the classification module enrolled data
- Parameters
classifier_handle: classifier handleerror: output parameter to return an error details
-
void
rf_auto_classification_clear(void *classifier_handle, rf_error_type *error)¶ Clear the classification module enrolled data
- Parameters
classifier_handle: classifier handleerror: output parameter to return an error details
-
const char *
rf_get_model_version(const char *model_base_path)¶ Get current version of the model
param model_path path to the model
- Return
model version